On Omega and Sadhana polynomial of a class of nanohorns

H. MESGARANI, M. GHORBANI*
Department of Mathematics, Faculty of Science, Shahid Rajaee,Teacher Training University, Tehran, 16785-136, IR. Iran

Abstract

Let G be an arbitrary connected graph and $s_{1}, s_{2}, \ldots, s_{k}$ be the oposite edges, ops strips of a plane graph G. Then the ops strips form a partition of $E(G)$ and the Ω-polynomial1 of G is defined as $\Omega(x)=\sum_{i=1}^{k} x^{\left|S_{i}\right|}$. In this paper we compute the Omega polynomial of an infinite class of nanohorns.

(Received August 2, 2010; accepted November 10, 2010)
Keywords: Omega and Sadhana polynomial, Sadhana index, Nanohorn

1. Introduction

By a graph G means a pair $G=(V, E)$ in which V and E denote to the set of vertices and edges, respectively. For two vertices x and y belong to V, x is adjacent to y if and only if $x y \in E(G) . G$ is connected, if for every pair (x, y) of V, there is a path between them. In this paper all of graphs are connected. A chemical graph is a graph theoretical representation of a molecule whose vertices correspond to the atoms of the compound and edges correspond to chemical bonds.

Two edges $e=a b$ and $f=x y$ of graph G are called codistant, "e co f ", if and only if $d(a, x)=d(b, y)=k$ and $d(a, y)=d(b, x)=k+1$ or vice versa, for a non-negative integer k. It is easy to check that the relation " $c o$ " is reflexive and symmetric but it is not necessary to be transitive. Set $C(e)=\{f \in E(G) \mid f$ co $e\}$. If the relation "co" is transitive on $C(e)$ then $C(e)$ is called an orthogonal cut "oc" of the graph G. The graph G is called co-graph if and only if the edge set $E(G)$ a union of disjoint orthogonal cuts. If any two consecutive edges of an edge-cut sequence are topologically parallel within the same face of the covering, such a sequence is called a quasi-orthogonal cut qoc strip. Let G be an arbitrary connected graph and $s_{1}, s_{2}, \ldots, s_{k}$ be the oposite edges, ops strips of a plane graph G. Then the ops strips form a partition of $E(G)$ and the Ω-polynomial [1-3] of G is defined as

$$
\Omega(x)=\sum_{i=1}^{k} x^{\left|S_{i}\right|}
$$

Another polynomial also related to the ops in G, but counting the non-opposite edges is the Sadhana $S d$ polynomial defined as ${ }^{4}$

$$
S d(x)=\sum_{i=1}^{k} x^{|E|-\left|S_{i}\right|}
$$

The Sadhana index $S d(G)$ for counting qoc strips in G was defined by Khadikar et al^{5-8} as $S d(G)=\sum_{i=1}^{k}|E(G)|-\left|S_{i}\right| . \quad$ By definition of Omega polynomial, one can obtain the Sadhana polynomial by replacing $x^{\left|S_{i}\right|}$ with $x^{|E|-\left|S_{i}\right|}$ in omega polynomial. Then the Sadhana index will be the first derivative of $S d(x)$ evaluated at $x=1$.

Carbon exists in several forms in nature. One is the so-called nanotube which was discovered for the first time in 1991. Unlike carbon nanotubes, carbon nanohorns can be made simply without the use of a catalyst $[9,10]$. The tips of these short nanotubes are capped with pentagonal faces; see Fig. 1. Let p, h, n and m be the number of pentagons, hexagons, carbon atoms and bonds between them, in a given nanohorn H. Then one can see that $n=r^{2}+22 r+41, m=\frac{3 r^{2}+65 r+112}{2}(r=0,1, \ldots)$ and the number of faces is $f=p+h$. By the Euler's formula $n-m+f=2$, one can deduce that $p=5$ and $h=\frac{r 2+21 r+24}{2}, r=1,2, \ldots$.

In This paper by using definition of Omega polynomial we compute it for infinite class of nanohorn H depicted in Fig. 1. Throghout this paper our notation is standard and mainly taken from standard book of graph theory such as $[11,12]$. For a more thorough introduction and treatment of Omega polynomial we refer the reader to [13-19].

Fig. 1. 2-D and 3-D graph of nanohorn H.

2. Main result and discussion

The aim of this section is computing Omega and Sadhana polynomials of nanohorn H depicted in Fig. 1. To do this at first we should consider the following examples.

Example 1. Let F_{20} be a fullerene with 20 vertices depicted in Fig. 2. It is easy to see that $\left|E\left(F_{20}\right)\right|=30$. By computing the qoc strips of F_{20} one can see that the Omega and Sadhana polynomials are $\Omega(x)=30 x$ and $S d(x)$ $=30 x^{29}$, respectively.

Fig. 2. The graph of fullerene F_{20}.

Example 2. Consider the pattern of TiO_{2} lattice depicted in Fig. 3. By calculating Omega and then the Sadhana polynomial we have the following relations"
$\Omega(x)=3 x^{3}+3 x^{5} ; \Omega^{\prime}(G, 1)=24=e(G) ;$
$S d(x)=3 x^{19}+3 x^{21} ; S d^{\prime}(G, 1)=120=S d(G)$.

Fig. 3. The pattern of TiO_{2} lattice.

Example 3. Suppose T_{n}, C_{n} and K_{n} denote the an arbitrary acyclic graph, cycle and complete graph on n vertices, respectively. Then by simple calculations, one can see that

$$
\begin{gathered}
\Omega\left(\mathrm{K}_{\mathrm{n}}, \mathrm{x}\right)= \begin{cases}\frac{\mathrm{n}}{2}\left(\mathrm{x}^{\left.\frac{\mathrm{n}}{2}+x^{\frac{n}{2}-1}\right) 2 \mid n} \begin{array}{ll}
n x^{\frac{n-1}{2}} & 2 \nmid n
\end{array}\right. \\
\Omega\left(C_{n}, x\right)=\left\{\begin{array}{ll}
\frac{n}{2} x^{2} & 2 \mid n \\
n x & 2 \nmid n
\end{array} \text { and } \Omega(T, x)=(n-1) x .\right.\end{cases}
\end{gathered}
$$

Consider now nanohorn H in Fig. 1. It is easy to see that the number of its edges is equal to $|E(G)|=\frac{3 p^{2}+65 p+112}{2}(p=0,1,2, \ldots)$. Then, the Omega and Sadhana polynomials are as follows:

Theorem.

$\Omega(x)=4 x^{p+1}+2 x^{p+2}+7 x^{p+3}+5 x^{p+4}+2 x^{p+5}+x^{p+7}+x^{p+10}+3 x^{3}+x^{p+13}+x^{p+16}$

$$
+\sum_{i=1}^{p-4} x^{p+16+i}
$$

Proof. There are $p+7$ separate cases that qoc strips are different. We denote these cases by edges $e_{1}, e_{2}, e_{3}, e_{4}$, e_{5}, e_{6} and f_{1}, \ldots, f_{p+1}. By this figure and Table 1 the proof is completed.

Fig. 4.2-D graph of nanohorn H.

Corollary. The Sadhana polynomial of nanohorn H is as follows:

$$
\begin{aligned}
& S d(x)=4 x^{|E| p-1}+2 x^{|E| p-2}+7 x^{|E|-p-3}+5 x^{|E|-p-4}+2 x^{|E|-p-5}+x^{|E| p-p}+x^{|E|-p-10} \\
& +3 x^{|E|-3}+x^{|E|-p-13}+x^{|E|-p-16}+\sum_{i=1}^{p-4} x^{|E| p-p-16-i} .
\end{aligned}
$$

Table 1. The Number of Parallel Edges.

Edges	The Number of Parallel Edges	No
e_{1}	$p+1$	4
e_{2}	$p+2$	2
e_{3}	$p+3$	7
e_{4}	$p+4$	4
e_{5}	$p+5$	2
e_{6}	3	3
f_{1}	$p+4$	1
f_{2}	$p+7$	1
f_{3}	$p+10$	1
f_{4}	$p+13$	1
f_{5}	$p+16$	1
\vdots	\vdots	\vdots
f_{i}	$16 p+i$	1

References

[1] M. V. Diudea, S. Cigher, P. E. John, MATCH Commun. Math. Comput. Chem., 60, 237 (2008).
[2] M. V. Diudea, I. Gutman, L. Jäntschi, Molecular Topology, NOVA, New York, 2002.
[3] M. V. Diudea, Carpath. J. Math., 22, 43 (2006).
[4] A. R. Ashrafi, M. Ghorbani, M. Jalali, Indian J. Chem., 47A, 538 (2008).
[5] P. V. Khadikar, D. Mandoli, S. Karmakar, S. Sadhana(Sd), Bioinformatics Ttrends, 1, 51 (2006).
[6] P. V. Khadikar, S. Joshi, A.V. Bajaj, D. Mandloi, Bioorg. Med. Chem. Lett., 14, 1187 (2004).
[7] P. V. Khadikar, S. Singh, M. Jaiswal, D. Mandoli, Bioorg. Med. Chem. Lett., 14, 4795 (2004).
[8] P. V. Khadikar, J. Singh, M. Ingle, J. Math. Chem., 42, 433 (2007).
[9] S. Iijima, Nature (London), 354, 56 (1991).
[10] D. S. Bethune, C. H. Kiang, M. S. Devries, G. Gorman, R. Savoy, J. Vazquez, A. Beyers, ibid., 363, 605 (1993).
[11] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969.
[12] N. Trinajstić, Chemical Graph Theory, (second ed.) CRC Press, Boca Raton, 1992.
[13] A. R. Ashrafi, M. Jalali, M. Ghorbani, M. V. Diudea, MATCH Commun. Math. Comput. Chem., 60(3), 905 (2008).
[14] M. Ghorbani, M. Jalali, Digest Journal of Nanomaterials and Biostructures, 4(1), 177 (2009).
[15] M. Ghorbani, M. Jalali, Digest Journal of Nanomaterials and Biostructures, 4(3), 403 (2009).
[16] M. Ghorbani, M. Jalali, MATCH Commun. Math. Comput. Chem., 62, 353 (2009).
[17] M. Ghorbani, M. Jalali, Digest Journal of Nanomaterials and Biostructures, 4(2), 423 (2009).
[18] M. Jalali, M. Ghorbani, Studia universitatis Babe Bolyai, chemia, 4, 25 (2009).
[19] M. Ghorbani, M. Jaddi, Optoelectron. Adv. Mater. Rapid Commun. 4(4), 540 (2010).

[^0]
[^0]: - Corresponding author: mghorbani@srttu.edu

