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Let G be an arbitrary connected graph and s1, s2, ..., sk be the oposite edges, ops strips of a plane graph G. Then the ops 

strips form a partition of E(G) and the Ω-polynomial1 of G is defined as | |
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Omega polynomial of an infinite class of nanohorns. 
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1. Introduction 
 
By a graph G means a pair G = (V, E) in which V and 

E denote to the set of vertices and edges, respectively. For 
two vertices x and y belong to V, x is adjacent to y if and 
only if )(GExy∈ . G is connected, if for every pair (x, 
y) of V, there is a path between them. In this paper all of 
graphs are connected. A chemical graph is a graph 
theoretical representation of a molecule whose vertices 
correspond to the atoms of the compound and edges 
correspond to chemical bonds. 

Two edges e = ab and f = xy of graph G are called 
codistant, “e co f”, if and only if d(a,x) = d(b,y) = k and 
d(a,y) = d(b,x) = k+1 or vice versa, for a non-negative 
integer k. It is easy to check that the relation “co” is 
reflexive and symmetric but it is not necessary to be 
transitive. Set ( ) { ( ) | }       C e f E G f co e= ∈ . If 
the relation “co” is transitive on C(e) then C(e) is called an 
orthogonal cut “oc” of the graph G. The graph G is called 
co-graph if and only if the edge set E(G) a union of 
disjoint orthogonal cuts. If any two consecutive edges of 
an edge-cut sequence are topologically parallel within the 
same face of the covering, such a sequence is called a 
quasi-orthogonal cut qoc strip. Let G be an arbitrary 
connected graph and s1, s2, ..., sk be the oposite edges, ops 
strips of a plane graph G. Then the ops strips form a 
partition of E(G) and the Ω-polynomial [1-3] of G is 
defined as 
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Another polynomial also related to the ops in G, but 
counting the non-opposite edges is the Sadhana Sd 
polynomial defined as4 
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The Sadhana index Sd(G) for counting qoc strips in G 

was defined by Khadikar et al5-8 as 

1( ) | ( ) | | |k
iiSd G E G S== −∑ . By definition of 

Omega polynomial, one can obtain the Sadhana 
polynomial by replacing || iSx with |||| iSEx −  in omega 
polynomial. Then the Sadhana index will be the first 
derivative of Sd(x) evaluated at x = 1. 

Carbon exists in several forms in nature. One is the 
so-called nanotube which was discovered for the first time 
in 1991. Unlike carbon nanotubes, carbon nanohorns can 
be made simply without the use of a catalyst [9,10]. The 
tips of these short nanotubes are capped with pentagonal 
faces; see Fig. 1. Let p, h, n and m be the number of 
pentagons, hexagons, carbon atoms and bonds between 
them, in a given nanohorn H. Then one can see that 

2 22 41n r r= + + , 
23 65 112

2
r rm + +

=  (r = 0,1,…) 

and the number of faces is f = p + h. By the Euler’s 
formula n − m + f = 2, one can deduce that p = 5 and 

2 21 24
2

r rh + +
= , r = 1, 2, ….  

In This paper by using definition of Omega 
polynomial we compute it for infinite class of nanohorn H 
depicted in Fig. 1. Throghout this paper our notation is 
standard and mainly taken from standard book of graph 
theory such as [11, 12]. For a more thorough introduction 
and treatment of Omega polynomial we refer the reader to 
[13 -19]. 
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Fig. 1. 2-D and 3- D graph of nanohorn H. 
 

 
2. Main result and discussion 
 
The aim of this section is computing Omega and 

Sadhana polynomials of nanohorn H depicted in Fig. 1. To 
do this at first we should consider the following examples.  

Example 1. Let F20 be a fullerene with 20 vertices 
depicted in Fig. 2. It is easy to see that |E(F20)| = 30. By 
computing the qoc strips of F20 one can see that the 
Omega and Sadhana polynomials are Ω(x) = 30x and Sd(x) 
= 30x29, respectively. 

 

 
Fig. 2. The graph of fullerene F20. 

Example 2. Consider the pattern of TiO2 lattice 
depicted in Fig. 3. By calculating Omega and then the 
Sadhana polynomial we have the following relations” 

3 5( ) 3 3x x xΩ = + ; ( ,1) 24 ( )G e G′Ω = = ; 
19 21( ) 3 3Sd x x x= + ; ( ,1) 120 ( )Sd G Sd G′ = = . 

 

 
Fig. 3. The pattern of TiO2 lattice. 

 
 

Example 3. Suppose Tn, Cn and Kn denote the an 
arbitrary acyclic graph, cycle and complete graph on n 
vertices, respectively. Then by simple calculations, one 
can see that  

 

−

−

⎧
⎪ +
⎪Ω = ⎨
⎪
⎪ /⎩

n n 1
2 2

n
n 1
2

n (x x ) 2 | n
2(K ,x) ,

nx 2 | n

⎧
⎪Ω = ⎨
⎪ /⎩

2

n

n x 2 | n
(C ,x) 2

nx 2 | n
 and Ω(T,x) = (n−1)x.  

 
Consider now nanohorn H in Fig. 1. It is easy to see 

that the number of its edges is equal to 
23 65 112| ( ) | ( 0,1,2,...)

2
p pE G p+ +

= = . Then, the 
Omega and Sadhana polynomials are as follows: 

 
Theorem.  
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Proof. There are p + 7 separate cases that qoc strips 
are different. We denote these cases by edges e1, e2, e3, e4,  
e5, e6 and f1, …, fp+1. By this figure and Table 1 the proof is 
completed. 
 



On Omega and Sadhana polynomial of a class of nanohorns 
 

1865

.
.

.

f1

f2

fp+1

e1

e2

e3

e4

e5

e6

 
 

Fig. 4.2 - D graph of nanohorn H. 
 
 

Corollary. The Sadhana polynomial of nanohorn H is 
as follows: 
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Table 1. The Number of Parallel Edges. 
 

Edges The Number of Parallel Edges No 
e1 1p + 4 
e  2  2p + 2 
e  3  3p + 7 
e  4  4p + 4 
e  5  5p + 2 
e  6  3 3 
f1 4p + 1 
f2 7p + 1 
f3 10p + 1 
f4 13p + 1 
f5 16p + 1 
M M M 
fi 16p i+ 1 
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